16 research outputs found

    An optical lattice with sound

    Get PDF
    Funding: We acknowledge funding support from the Army Research Office. Y.G. and B.M. acknowledge funding from the Stanford Q-FARM Graduate Student Fellowship and the NSF Graduate Research Fellowship, respectively. S.G. acknowledges support from NSF Grant No. DMR-1653271.Quantized sound waves—phonons—govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs). The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose–Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallization that supports phonons via short-range, photon-mediated atom–atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC–photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions to exotic ‘fractonic’ topological defects in the quantum regime.PostprintPeer reviewe

    Enhancing associative memory recall and storage capacity using confocal cavity QED

    Get PDF
    Funding: Y.G. and B.M. acknowledgefunding from the Stanford Q-FARM Graduate Student Fellowship and the NSF Graduate Research Fellowship, respectively. J.K. acknowledges support from the Leverhulme Trust (IAF-2014-025), and S.G. acknowledges funding from the James S. McDonnell and Simons Foundations and an NSF Career Award.We introduce a near-term experimental platform for realizing an associative memory. It can simultaneously store many memories by using spinful bosons coupled to a degenerate multimode optical cavity. The associative memory is realized by a confocal cavity QED neural network, with the modes serving as the synapses, connecting a network of superradiant atomic spin ensembles,which serve as the neurons. Memories are encoded in the connectivity matrix between the spins and can be accessed through the input and output of patterns of light. Each aspect of the scheme is based on recently demonstrated technology using a confocal cavity and Bose-condensed atoms. Our scheme has two conceptually novel elements. First, it introduces a new form of random spin system that interpolates between a ferromagnetic and a spin glass regime as a physical parameter is tuned—the positions of ensembles within the cavity. Second, and more importantly, the spins relax via deterministic steepest-descent dynamics rather than Glauber dynamics. We show that this nonequilibrium quantum-optical scheme has significant advantages for associative memory over Glauber dynamics: These dynamics can enhance the network’s ability to store and recall memories beyond that of the standard Hopfield model. Surprisingly, the cavity QED dynamics can retrieve memories even when the system is in the spin glass phase. Thus, the experimental platform provides a novel physical instantiation of associative memories and spin glasses as well as provides an unusual form of relaxational dynamics that is conducive to memory recall even in regimes where it was thought to be impossible.Publisher PDFPeer reviewe

    Spinor self-ordering of a quantum gas in a cavity

    Get PDF
    Funding: J. K. acknowledges support from SU2P.We observe the joint spin-spatial (spinor) self-organization of a two-component BEC strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant two-photon Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.PostprintPostprintPeer reviewe

    Dynamical Spin-Orbit Coupling of a Quantum Gas

    No full text

    Sign-changing photon-mediated atom interactions in multimode cavity quantum electrodynamics

    No full text
    Funding: J. K. acknowledges support from SU2P.Sign-changing interactions constitute a crucial ingredient in the creation of frustrated many-body systems such as spin glasses. We present here the demonstration of a photon-mediated sign-changing interaction between Bose-Einstein-condensed atoms in a confocal cavity. The interaction between two atoms is of an unusual, nonlocal form proportional to the cosine of the inner product of the atoms’ position vectors. This interaction arises from the differing Gouy phase shifts of the cavity’s degenerate modes. The interaction drives a nonequilibrium Dicke-type phase transition in the system leading to atomic checkerboard density-wave order. Because of the Gouy phase anomalies, the checkerboard pattern can assume either a sinelike or cosinelike character. This state is detected via the holographic imaging of the cavity’s superradiant emission. Together with a companion paper [Y. Guo, V. D. Vaidya, R. M. Kroeze, R. A. Lunney, B. L. Lev, and J. Keeling, Emergent and broken symmetries of atomic self-organization arising from Gouy phases in multimode cavity QED, Phys. Rev. A 99, 053818 (2019)], we explore this interaction’s influence on superradiant phase transitions in multimode cavities. Employing this interaction in cavity QED spin systems may enable the creation of artificial spin glasses and quantum neural networks.PostprintPostprintPeer reviewe
    corecore